[sort:pic_lat]

FAQs

We have summarized some common problems, hope to help you. If you still have questions, please contact us!
  • 16.

    What fails on an electric car?

    Electric vehicles, like any other vehicle, can fail, although they are different from traditional internal combustion engine (ICE) vehicles. Here are some common areas where electric vehicles can fail:
    1. Battery Pack
    Degradation: Over time, battery capacity decreases, reducing the car's range.
    Faulty cells: Individual cells in a battery pack may fail, potentially causing a significant drop in performance or range.
    Cooling system issues: The battery pack requires a proper cooling system to maintain an optimal temperature. If the cooling system fails, it can cause overheating and shorten the battery life.
    2. Electric motor
    Bearing wear: The bearings in electric motors can wear over time, causing increased noise or reduced efficiency.
    Stator/Rotor Problems: While less common, problems with the stator or rotor inside the motor can cause loss of power or complete failure of the motor.
    3. Power Electronics
    Inverter failure: The inverter converts DC to AC to power the motor and can fail due to overheating or electronic component failure.
    DC-DC converter issues: This component steps down the high voltage of the battery pack to power the car's low-voltage systems, such as lights and infotainment. A failure here could affect various auxiliary systems.
    4. Charging system
    On-board charger failure: The on-board charger that converts AC power from the grid to DC power for the battery pack may fail, preventing the car from charging.
    Charging port issues: The charging port and related connections can become worn or damaged, causing charging issues.
    5. Software/control system
    Firmware errors: Software issues can cause unexpected behavior, such as a car not starting, charging issues, or incorrect range estimates.
    Sensor failure: Electric vehicles rely on a variety of sensors for battery management, temperature control, and safety systems. Failure of these sensors can cause performance issues or trigger warning lights.
    6. Regenerative braking
    Braking system wear: While regenerative braking reduces wear on conventional brakes, components such as the regenerative braking system itself can fail, resulting in reduced efficiency or braking performance.
    Inconsistent brake feel: Some drivers report consistency issues with the brake system, which could be due to software calibration or a mechanical issue.
    7. Cooling and heating systems
    HVAC System Issues: Heating and cooling systems are critical to battery management and cabin comfort, but a malfunction can result in battery overheating or cabin discomfort.
    8. Suspension and steering
    Wear and tear: While this is not specific to electric vehicles, suspension and steering components can fail over time due to wear and tear, especially in heavier electric vehicles.
    9. Tires
    Increased wear: Due to the high weight of electric vehicles and the high instantaneous torque provided by the electric motor, tires wear out faster than those of conventional vehicles.
    Regular maintenance and monitoring can help alleviate many of these problems, and electric vehicles generally have fewer moving parts than internal combustion engine vehicles, which can lead to fewer mechanical failures.
  • 17.

    What is EV control system?

    The electric vehicle control system is a key component in an electric vehicle (EV) that manages and coordinates the operation of all major subsystems within the vehicle. The control system ensures that the EV operates efficiently, safely, and smoothly by integrating and managing the flow of information between the various components. Here is an overview of what an EV control system typically involves:
    Key functions of electric vehicle control systems
    1. Power management:
    Battery Management System (BMS): Monitors the battery pack’s state of charge (SOC), state of health (SOH), temperature, and voltage to ensure it operates within safe ranges.
    Energy Distribution: Regulates the distribution of power from the battery to the electric motors, auxiliary systems, and other components.
    2. Motor control:
    Inverter Control: Converts direct current (DC) from the battery into alternating current (AC) for the motor. It also controls the speed and torque of the motor based on driver input.
    Regenerative braking: manages the conversion of kinetic energy into electrical energy during braking and feeds it back into the battery.
    3. Thermal management:
    Cooling and heating control: Manage the temperature of the battery, motor and power electronics to ensure they remain within the optimal operating range. This includes controlling fans, pumps and other cooling/heating equipment.
    4. Vehicle dynamic control:
    Traction Control: Regulates power delivered to the wheels to prevent wheel slip during acceleration.
    Stability Control: Helps maintain vehicle stability by controlling torque and braking force at each wheel.
    5. Charging control:
    On-board charger management: Controls the charging process when the vehicle is plugged into an external power source, including managing the charge rate and ensuring battery safety.
    Communicate with charging stations: Manage the communication between electric vehicles and charging infrastructure to optimize charging time and energy costs.
    6. Driver interface:
    Throttle and brake controls: Process input from the accelerator and brake pedals to control vehicle speed and braking.
    Display and feedback: Provides real-time information to the driver, such as battery status, range and system warnings.
    7. Communication and integration:
    CAN buses and networks: Facilitates communication between different electronic control units (ECUs) within the vehicle, ensuring coordinated operation.
    External Communications: Manages communications with external systems, such as cloud services for navigation, remote diagnostics, and updates.
  • 18.

    What is an EV system?

    An EV system refers to the set of components and technologies that make up an electric vehicle (EV). The system is designed to power the vehicle using electricity rather than a traditional internal combustion engine that relies on fossil fuels. Key components of an EV system include:
    ① Battery Pack: The battery pack stores electrical energy and is the main source of energy for the vehicle. It is usually composed of lithium-ion batteries and can be charged by plugging the vehicle into an external power source.
    ② Electric motor: The electric motor converts the electrical energy of the battery pack into mechanical energy to drive the wheels. Some electric vehicles have multiple motors to achieve all-wheel drive function.
    ③ Power electronics: This includes components such as the inverter, which converts direct current (DC) from the battery into alternating current (AC) for the motor, and the control unit that manages power flow to optimize performance and efficiency.
    ④ Charging system: The charging system includes an onboard charger and a charging port. It allows the vehicle to be charged by connecting to an external power source, such as a home charger or a public charging station.
    ⑤ Thermal management system: This system manages the temperature of the battery pack and other components to ensure they operate within the optimal temperature range, which is critical to performance, safety and service life.
    ⑥ Regenerative Braking: This feature recovers energy during braking and feeds it back into the battery, improving efficiency by extending the vehicle's mileage.
    ⑦ Transmission (if applicable): Although many electric vehicles use a single-speed transmission due to the high torque of the electric motor, some electric vehicles may use a multi-speed transmission to improve performance.
    ⑧ Vehicle control systems: Software and electronics that manage the interactions between all components to ensure smooth operation, efficiency, and safety.
    EV systems are what differentiate electric vehicles from traditional petrol or diesel cars, making them more environmentally friendly, energy efficient and generally offering a different driving experience.
  • 19.

    ¿Cómo se soluciona un mal funcionamiento del sistema de gestión de batería?

    La reparación de una falla del sistema de administración de baterías (BMS) puede variar según el problema específico y el diseño del sistema. A continuación, se indican algunos pasos generales que puede seguir para solucionar problemas de un BMS:
    ① Diagnóstico: primero, debe diagnosticar el problema específico con su BMS. Esto puede implicar el uso de herramientas de diagnóstico para buscar códigos de error o realizar inspecciones manuales de los componentes del sistema de batería.
    ② Verifique las conexiones: asegúrese de que todas las conexiones a los componentes del sistema de administración de la batería estén seguras y libres de corrosión. Las conexiones flojas o corroídas pueden provocar un mal funcionamiento.
    ③ Verifique el cableado: Verifique que el mazo de cables conectado al BMS no presente signos de daño, desgaste o deshilachado. Un cableado dañado puede interrumpir la comunicación entre la unidad de batería y el BMS.
    ④ Reinicio: algunas fallas del BMS se pueden solucionar reiniciando el sistema. Esto puede implicar desconectar la batería del sistema eléctrico del vehículo durante un período de tiempo o usar una herramienta de diagnóstico para reiniciar el BMS.
    ⑤ Actualizaciones de software: si la falla del BMS está relacionada con un problema de software, instalar las actualizaciones proporcionadas por el fabricante puede resolver el problema. Muchos vehículos modernos vienen con software BMS que puede ser actualizado por un concesionario o un mecánico calificado.
    ⑥ Reemplace los componentes defectuosos: si se determina que un componente específico del BMS (como un sensor o un módulo de control) está defectuoso, es posible que deba reemplazarlo. Asegúrese de que todas las piezas de repuesto sean compatibles con la marca y el modelo de su vehículo.
    ⑦ Asistencia profesional: si no puede diagnosticar o reparar una falla del sistema BMS por su cuenta, lo mejor es buscar la ayuda de un mecánico o distribuidor calificado. Ellos tendrán la experiencia y el equipo especializado necesarios para diagnosticar y reparar sistemas eléctricos complejos como el BMS.
    Es importante resolver las fallas del BMS rápidamente para evitar posibles daños a la batería y garantizar el funcionamiento seguro del vehículo.
  • 20.

    ¿El freno de estacionamiento electrónico es un freno de emergencia?

    Sí, un freno de estacionamiento electrónico (EPB) cumple la misma función básica que un freno de emergencia manual tradicional. Su función principal es mantener el vehículo parado al estacionar, especialmente al subir o bajar pendientes.
    Mientras que los frenos de emergencia convencionales se accionan manualmente mediante una palanca o un pedal, el freno de estacionamiento electrónico se activa y desactiva mediante un control electrónico, generalmente un interruptor o botón en el tablero o la consola central.
    Aunque su funcionamiento es diferente, ambos tipos de frenos están diseñados para evitar que el vehículo se mueva cuando está estacionado. El freno de estacionamiento electrónico también puede actuar como freno de emergencia en caso de emergencia, pero su eficacia puede variar según el sistema y la situación específicos. Sin embargo, cabe señalar que algunos sistemas de freno de estacionamiento electrónico no están diseñados para el frenado de emergencia mientras el vehículo está en funcionamiento y es posible que no proporcionen la misma fuerza de frenado inmediata que el frenado de emergencia tradicional. Asegúrese de consultar el manual del propietario de su vehículo para obtener instrucciones específicas sobre cómo utilizar el freno de estacionamiento en caso de emergencia.
Skip to

Want to learn more?

Click “ CASE”, Obtain more about successful cases
Where to buy Become our distributor